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Topology-preservation emergence by the Hebb rule with infinitesimal short-range signals
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Topology preservation is a ubiquitous phenomenon in the mammalian nervous system. What are the
necessary and sufficient conditions for the self-organized formation of topology preservation due to a
Hebb mechanism? A relatively realistic Hebb rule and neurons with stochastic fluctuations are modeled.
Moreover, the reasonable growth law is used for coupling growth that the biomass increase is propor-
tional to the present biomass under the constraint that the biomass is limited at a neuron. It is proven
for such general Hebb-type networks that infinitesimal lateral signal transfer to neighboring neurons is
necessary and sufficient for the emergence of topology preservation. As a consequence, observed topolo-
gy preservation in nervous systems may emerge with or without purpose as a byproduct of infinitesimal
lateral signal transfer to neighboring neurons due to ubiquitous chemical and electrical leakage.

PACS number(s): 87.90.+y
I. INTRODUCTION

Since the 1930’s it has been empirically established that
many nervous systems exhibit several so-called cortical
maps [1]. For instance, the sensor stimuli of the skin are
transferred via axonic connections to the gyrus of the
parietal cortex. These connections exhibit two nontrivial
properties: they establish a mapping from locations at the
skin to locations at the cortex and neighboring skin loca-
tions are preferentially mapped to neighboring cortex lo-
cations; the latter phenomenon is called topology preser-
vation. The basic role of such topology preservation is il-
lustrated by the fact that such topology preservation is
inherent already to Descartes brain models [2,3].

The formation of these maps takes place in several
steps during ontogeny. First the cells of the embryo mi-
grate to their destination areas, then the axons grow ac-
cording to markers, chemical markers, for instance, and
finally the axonic connections change according to the
neuronal activity in a self-organized manner. Such self-
organization has been discussed since the 1920’s [4,5].
Nowadays such self-organization is usually studied with
two-layer neural networks with some explicit or implicit
lateral interaction mechanism. However, there remained
still some important open questions. For instance, it was
not clear what range and what intensity such lateral in-
teraction should have in order to stabilize topological or-
der [5-8]. In the present paper, a neural network model
is developed and solved exactly in the framework of a
general neurostatistical field theory [9—11], similar to hy-
drodynamics, with the Navier-Stokes equations as proto-
tye, for instance.

As a result it turns out that infinitesimal short-range
signal transfer is sufficient. This implies that such topolo-
gy preservation is a typical phenomenon in self-
organizing neuronal systems with only slight short-range
lateral signal transfer. This implies in turn that the mere
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observation of such topological order without further evi-
dence should not yet be interpreted as purposeful, be-
cause such order may easily emerge as a byproduct of a
neuronal self-organization process.

For comparison, two clocks with a pendulum at the
same wall are infinitesimally coupled, as a result, they
synchronize after a while, as discovered by Huygens in
1665 [12].

II. NETWORK MODEL

A neural network usually has two dynamical rules: the
neuronal dynamics models the activity of neurons and the
coupling dynamics models the change of synaptic con-
nections [13]. In addition, a network architecture and a
stimulation should be specified for an adapting neural
network [9-11].

A. Network architecture

The network consists of S sensor neurons n > I cortical
neurons 7; and of all possible afferent couplings W; (that
is from sensor neurons to cortical neurons; it turns out
later that many of these couplings take the value 0). For
the sake of a simple formalism, the case Sny=1 is con-
sidered; the general case of arbitrary I and S is similar.

The sensor neurons and the cortical neurons exhibit an
arbitrary topology, including arbitrary dimension, as fol-
lows. The sensor neurons exhibit arbitrary neighborship
relations. The neighbors of a sensor neuron n; are for-
malized by the sensor neighbor set v(j). Analogously, the
neighbors of a cortical neuron 7; are formalized by the
cortical neighbor set ¥(i). For the particular case of a
one-dimensional neural network, the architecture is illus-
trated in Fig. 1.

B. Network dynamics

The neurons take values O or 1 at discrete time steps
t=1,2,3,..., that is n;(#)=0 or 1 and #,;(2)=#;=0 or
1. Here and in the following, the time index is omitted if
it is . The sensor neurons are stimulated by mutually un-
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correlated equally distributed random stimuli, these are
expressed by n,;(#)=0 or 1 with equal probability.

1. Signal transfer

A presynaptic neuron n; transfers a signal to a post-

synaptic neuron 7; via a coupling W;; in addition, this
coupling transfers signals also to and from neighboring
neurons as indicated in Fig. 1. This is formalized as fol-
lows. The axonic membrane potential ¢,; that gives rise
to the signal transfer from n; to 7; is established additive-
ly by the values n; of the presynaptic neuron and the
presynaptic lateral contribution parameter a times n,, of

the neighboring neurons

¢;=n;+ta 3 n,. (1)

n,, €v(j)

This membrane potential ¢,; contributes a stimulating lo-
cal field h;;; to the kth cortical neuron 7; as follows.
The membrane potential ¢,; gives rise to a stimulating lo-
cal field 4;; ;(z +1) at the next time step 7=1 at the post-
synaptic neurons 7, =#; proportional to the positive
term WZ /2 and it gives rise to a stimulating local field
h;; (¢t +1) at the neighbors 7} of the postsynaptic neu-
ron 7; proportional to the positive term WS /2 times the
postsynaptic lateral contribution parameter [ (see Fig. 1).
That is

w3
— y
hij,i(t +1)-—¢UT ,

w2
h,.j’k(t+1)=¢,.j7”3 for 7, €Wi) , )

hy(t +1)=0 for ki, and not 7, EW(I) .

One might be surprised that a square of the couplings
occurs here. This is convenient. Moreover it is not
essential, because the theory can as well be developed
with the transformation K;;= W,%, it is clear from
theoretical reasons and it has been shown explicitly in
similar theories that this transformation has no effect; see
Eq. (7) below or [8-10].
As a consequence, such contributions from all sensor
neurons 7; add up at a cortical neuron 7; as follows
N
ht+1)=T El-j’,.(t+1)+ > }Tkj,,-(t—kl) . (3)
j 7y EW(i)

FIG. 1. Network architecture. Illustration
for the special case of the one-dimensional
model. n;, input neuron; #;, cortical map neu-
ron; ¢, axonic membrane potential; a,

N presynaptic lateral contribution parameter; 3,
*’sz /2 postsynapt‘ic lateral contribution parameter;
L W,;, coupling.
ﬁz-&—l

By inserting Eq. (2) one gets

2 2

hi(t+1)=2 ¢ij'-2_+3 > by > . 4)

J i, €W(i)

2. Stochastic neuronal dynamics

The cortical neurons #; prefer to fire according to the
stimulating local field %;, however there is the possibility
that the cortical neurons fire differently due to random
fluctuations. This is formalized by the Boltzmann proba-
bility with a fluctuation parameter T as follows:

h;a, /T
P(ﬁi):_CX_P[_“:_] . (5)
1+exp[h;/T]

3. Coupling dynamics

A coupling weight W;; is increased, if the presynaptic
membrane potential ¢;; and the postsynaptic firing stimu-
lated by that membrane potential are in accordance.

This is modeled as follows:

nita 3 n,
n,, €wJ)

Hebb
AWHP =g,

X

A(t+1)+B S ?[k(t—!-l)}. ©)

i, E%(i)

Hereby, the coupling change AWi?ebb is proportional to a
learning parameter a, to the present coupling W;; (in typi-
cal biological growth processes the biological matter in-
crease is proportional to the present biological matter), to
the presynaptic activity n;+a 3, evij) Pm and to the
postsynaptic activity 7;(t +1)+p Eﬂk ekt t1).

This ansatz is immediately motivated by the Hebb rule,
due to the product of presynaptic and postsynaptic activi-
ties. This Hebb rule makes sense physiologically, because
the presynaptic and postsynaptic activities give rise to lo-
cal metabolic changes that induce the coupling change.
Moreover, the functional form of this coupling change is
quite general, because any function f of a neuronal vari-
able n; may be presented in terms of a power series

j
fnp)=fo+finj+foni+ - =fo+fin;, due to
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n;y=n;=0 or 1; here the constant f; does not depend on
n; and is irrelevant, while f| corresponds to a and 8.

For the sake of transparency of the square in the for-
mal field #;, it is shown that the coupling growth law
takes the same form for the transformed couplings
K;= Wg Using the partial derivative dK;; /OW; =2W;
one gets AKF**=2W, AW['*®, thus

njita 3 n,

n,, €v(j)

AK[**=24K;

X |me+D+g 3

ny €v(i)

iik(t+1)] )

Moreover, the above coupling dynamics is modeled
with the effective constraint that the total coupling
weight at a presynaptic neuron is constant. This is for-
malized in terms of a Euclidean norm and a radius 7 in
coupling space

I
S Wi=ner. (8)

1

Analogously, the above coupling dynamics is modeled
with the effective constraint that the total coupling
weight at a postsynaptic neuron is constant.

S
Swi=rt. )
J

Both constraints are in agreement with the empirical ob-
servation that the connectivity is quite fixed at a neuron
[14]. .

The above effective constraints are achieved roughly by
the following additional coupling changes.

F) Vjsensor

I

additional sensor — ___
AW

2

I
: sensor 2 _ 2
with V"¢ 2 Wi —nor
i

and constraint parameter ¢ .  (10)

cortical
av;

A W_a.dditional cortical — __
Y oW

with prorticdl=c¢ 2W,§.—r2] . an
J

Altogether, the total coupling change is the sum

— Hebb additional sensor
AW, =AW+ AW
+A ngditional cortical . (12)

Each such additional coupling change depends on those
couplings that are connected with the corresponding neu-
ron. Thus such an additional dynamics models a mecha-
nism by which the presynaptic neuron may decrease or
increase the coupling weight incrementally at its end of
the coupling and analogously the postsynaptic neuron
may decrease or increase the coupling weight incremen-
tally at its end of the coupling. Such a mechanism may

be regarded as local at a neuron.

In addition to the identification of the empirical plausi-
bility of the effective constraints, a further discussion of
the locality of these constraints makes sense: In the
framework of a computer simulation, it is clear that the
performance of such a constraint requires the perfor-
mance of S or I couplings at a neuron, while a completely
global coupling norm would require the performance of
all possible ST neurons at once.

4. Constraint approximation

For appropriate values of the constraint parameter c,
the additional coupling changes give rise to coupling
states that obey the effective constraints in Egs. (8) and
(9) roughly. The focus of the present study is topological
order, so it is completely adequate to approximate the
effect of the additional coupling changes by a rescaling of
the coupling state W;=W; +AW,~§“’bb so that the
effective constraints are roughly obeyed. Within the con-
straint approximation, one gets

Wi’j =[ Wi +A Wt?ebb]

rescaled *

For short, the bracket is not explicated in the following,
i.e.,

Wi=W;+AW[e® (13)

C. Fixed simulation potential

The network model is introduced above. An immedi-
ate property of the Hebb-type coupling dynamics [see Eq.
(6)] is that it may be derived from a potential for each
stimulation:

1. Fixed stimulation potential theorem

For a fixed stimulation by a sensor configuration

p=f{n {,}’ the resulting Hebb-type coupling change
AI’I"[‘]-{e is the derivative of a potential function H* as
follows.
oH*
AW = —q="— 14
f a aw, (14)
with the formal energy function
I
i=1
for a fixed stimulation g .  (15)

2. Principle underlying the proof

The proof relies on the symmetry of the neighborship-
relation.

3. Proof

By inserting Eq. (4) into Eq. (15) one gets
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J . (16)

The above partial derivative yields nonzero terms only, if
the indices of W; are equal to those of Wy, or W,,.
Thus nonzero terms occur, when m takes the value j and
when i is equal to k or i =g¢=neighbor index of k. Thus
one obtains conversely k =i or k=neighbor index of i,
due to the symmetry of the neighborship relation. So one
gets
oHH* _
AW ==W;¢; |t +1D)+B ¥ A,+1)|. (A7

& , EW)

By comparing this expression with Egs. (1) and (6) one
obtains

dH*
3w,
Q.E.D.

=—AWfeb/q (18)

III. FIELD-THEORETIC SOLUTION OF THE NETWORK

We give here an overview for the solution method. In
order to solve the above-introduced network model, one
should specify the coupling matrices that emerge as a re-
sult of the combined neuronal and coupling dynamics.
This is achieved here as follows (for a very detailed
description see [9-11]): First the combined dynamics is
identified as taking place in the combined set of states
(n, W) of neurons and couplings. This set may be regard-
ed as being embedded in a vector space with continuous
values for neurons and couplings and with the neuronal
space and coupling space as subspaces. In this state set,
the combined dynamics establishes a Marcov process, by
construction. In the rest of the paper, this Markov pro-
cess is assumed to be ergodic; this is reasonable for many
cortical maps with rapid coupling changes [15]; see also
the discussion below.

As a consequence, the averaged changes may be de-
scribed by a vector field. The fast neuronal variables may
be solved first in a so-called adiabatic limit. The remain-
ing coupling dynamics is characterized by an ordinary

J

differential equation that may be derived from a scalar
potential. The stationary states of the coupling dynamics
are the local potential minima. These stationary states
represent the possible emerging networks. As a conse-
quence, the possible emerging networks may be investi-
gated by analyzing the potential minima. As a result of
that analysis one obtains precise conditions for the emer-
gence of topologic order.

A. Field theory

1. Discussion of ergodicity

If each state of a Markov process may be taken with
finite probability from any of its states, then the process is
ergodic. So the emergence of a cortical map with the
possibility of relatively global coupling changes may be
adequately modeled with an ergodic Markov process.
Such cortical map formations are quite typical in the ner-
vous system. For instance, the couplings may change
significantly when the stimulation from a part of the sen-
sory input stops due to a lesion [15]. More specifically,
cortical maps exhibit especially high plasticity during
early ontogeny, in special critical periods, after lesions or
during regeneration. Altogether it appears adequate to
model cortical map formation in terms of an ergodic
Markov process; for a particular comparison with experi-
ments, one may adjust the learning rate a@ and the fluctua-
tion rate T to the data.

From a more formal point of view, one may derive the
ergodicity from an assumption of limited coupling resolu-
tion [9,11].

2. Vector field

Because the combined dynamics is assumed ergodic,
it makes sense to characterize the mean changes
of combined states in terms of the ensemble average
of changes of combined states. This average may be
expressed in terms of the conditioned probability
P({7;(t +D}|{n;(0)},{m,()},W(),T) that a neuronal
configuration {#;(¢+1)} is taken at the time step t+1
under the condition that at the time step ¢ the stimulation
is {n;(2)} and the combined state is {#,(¢)}, W(z) and the
fluctuation parameter is 7. In particular, this average is
the following sum over the possible 2V configurations of
the neuronal states at time ¢ and over the possible 2V
configurations of the neuronal states at time ¢+ 1, multi-
plied with the probability 1/2% due to the uniform distri-
bution of the stimulating states:

2N 2N
((An,AW)) = > LN > P({?[,-(t+1)}|{nj},{ﬁ,-},W,T)(n(t+1)—n,AW) . (19)
{n;} {7, (t+1);

As a consequence, for each T the mean changes ((An,AW)) establish a vector field in the combined space, because
such mean changes are functions of the combined state due to the condition of the above-conditioned probability and
due to the fact that after averaging such mean changes do not depend on the stimulation.
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3. Differential equation

One may introduce the continuous time limit by using a variable time interval At between two successive time steps ¢

and ¢t +At. That is, the time steps, ¢, t +At, t +2At, t +3A¢, . ..

are modeled. With it one may divide the above equa-

tion by that time interval and take the limit of zero time interval, that is,

((n(t +At)—n,W(t +A1)—W))

B(n, W) _ .
dt Ar—0 At

2N 2N

1 ..
zﬁhmmao > >

{nj(0} {m,(t +A0)}

P({7,(t +AD} | {n,}, (7}, W, T)

(n(z +At)—n,W(t +At)—W)

A (20)

Thus the mean change of combined states obeys the above explicitly expressed ordinary differential equation in the

combined space.

4. Adiabatic limit

Typically, the neurons change on the time scale of milliseconds, whereas the couplings change on the much longer
time scale of minutes to years. Thus one may solve the motion of the fast neurons first by means of an adiabatic limit
(that is the leading order of a systematic adiabatic approximation as described in [16]), then one may solve the changes

of the slower couplings.

To this end one may proceed as follows. One may consider a fixed value of the slow couplings and perform the aver-
age over the neuronal states [see Eq. (19)] and one may use the fact that the state {#;(¢z +1)} is generated independently
from the state {7;}. As a result one obtains for the mean change of couplings

2N bd

(AW)=-'3 S P(mt+1}l{n},W,TIAW .

{n;} {m(+ 1)}

(21)

These mean coupling changes establish another vector field in coupling space. The corresponding differential equation
may be obtained either by applying the usual adiabatic approximation in leading order to the former differential equa-
tion [see Eq. (20)], or by performing the continuum limit to the above Eq. (21). As a result one gets

HW)Y 1 . 22
T:FhmAHoz >

{n;} {n,(t+An}

P({,(t + A0} {n;},W,T)

Wit +At)—W
At )

(22)

For the sake of explicitness, one may express the mean coupling change [see Eq. (21)] in terms of the components

(A ) 1 2N ZN
”ij 2N E
{n;} (e +1))

5. Necessary and sufficient condition for the
adequate applicability of the adiabatic limit

For the purpose of a general applicability of the
present approach in cortical maps, one would like
to be sure that the adiabatic limit may be applied quite
generally. A trivial condition for the applicability is
that the time scales should differ significantly; this is
typically the case in the nervous system. A nontrivial
condition is that the neuronal dynamics ‘“‘comes to a
resglt” sufficiently fast so that the ensemble average
Z%Hi(HA”}P({ﬁi(t +An}|{n;},W,T) over neuronal

states corresponds to a time average for those time scales
at which the couplings do change only slightly. Here this
is probably the case for all neuronal processes that are
effectively finished within a few minutes. Nowadays,
slower neuronal process can hardly be measured, for in-
stance, event related potentials can be recorded at most
for few seconds. These two conditions should be
sufficient and necessary for the adequate applicability of
the adiabatic limit. Thus the adiabatic limit is adequate
for practically all nervous events that are measurable
nowadays.

S PUm+D}{n;},W,T)AW; .

(23)

In the present case of the self-organization of topologi-
cal order, the adiabatic limit can be applied especially
easily, because the neuronal states {#;(z +1)} do not de-
pend on the previous states {7;(¢)}, due to the feed for-
ward network architecture. So the above nontrivial con-
dition is obeyed in a trivial manner here.

B. Potential field

The mean coupling change in Eq. (23) is a vector field
in coupling space. Next it is shown that this vector field
turns out to be a gradient of a scalar potential, that is, a
potential field.

1. Potential theorem

In the adiabatic limit, the mean coupling change [see
Eq. (23)] is the gradient of a scalar potential as follows:

aV

oW, (24)

<AWU>=_

with the scalar potential
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2N
V= ——;—T— > InZ* where the stimulation {n;} is denoted by p (25)
u
and the formal partition functions
2N
Z¢t= ¥ exp[—H"/T]. (26)
{71 +1))

Accordingly, the stable emerging networks are the local minima of the scalar potential V.

2. Principle underlying the proof

Formally, one may 1nterpret the determination of the potential as an integration, for instance, one may integrate Eq.
(24), so one may get V =— f o i (AW Yd W,;. In this sense the method and the obtained results are quite general. The

fact that in the particular present case the resulting integral may in fact be expressed in terms of an explicit and rather
simple function is due to the form of the probability [see Egs. (1)—(5)] and of the whole network model. In particular,
methods of statistical physics are applied here and generalized to the case of single objects like single neurons and cou-
plings, whereas statistical physics deals with systems in the limit of an infinite number of objects.

3. Proof

To begin with, one may take Eq. (23) and express the conditioned probability in terms of the product of the probabili-

ties in Eq. (5), because this product is the desired probability that a neuronal state {7;(¢ +1)} is taken. So one gets

N

2 2 I1 Pz (r + 1)

{n;} (me+1)) i=1

<AW,,.>~

”j}»W,T)AWij .

27)

Next one may insert for the probabilities according to Eq. (5) and express these probabilities in the denominator with a

sum of two exponentials. So one gets

2 exp[h;(t +1)a;(t +1)/T]

EZH

<AW,.,.>—
n} (me+1)) =1 2n(z+1

This expression may be transformed into (for details see
[9-11))

— HH"
(AWU)~ 2 2 S’Sﬂ[__i{_ﬂAWij )
{n;} {m(e+1) Z

(29)

For the purpose of a later comparison, one may perform
the gradient of the scalar potential

v g 2 exp[ —H"/T] . 3H"
aW 2N b {m(t+1)) zr BW
(30)

Next one may use the fixed stimulation potential
theorem, so one gets
3V _ 1% 2 exp[—H*/T]
TAw. N2 2 AW, . (1)
aW 2 (A (t+1)] z
By comparison of this expression with Eq. (29) one ob-
tains

14
aw,; -

iy

(32)

Q.E.D.

N
lexp[h (t+1)m (e +1)/T)

(28)

4. Interpretation of the potential theorem

The potential ¥ makes possible an intuitive and simple
understanding and analysis of the emerging networks in
terms of local potential minima. Moreover one may
derive for any desired stimulation (rather than equally
distributed as above) the resulting emerging networks.
Conversely, one may design for a desired network an ap-
propriate stimulation that gives rise to it.

C. Emergence of an injective mapping

Due to the fact that the growth of the coupling
biomass is fast at large couplings and limited at each neu-
ron, one might expect that few couplings are nonzero at
each neuron. In the following, two neurons n; and 7; are
called connected, if they are coupled by a nonzero cou-

pling W;;70.

1. Injective mapping theorem

For networks that are locally stable with respect to sto-
chastic fluctuations and with respect to variations of the
formal temperature T holds: (1) Each sensor neuron is
connected with n, cortical neurons. (2) Each cortical
neuron is connected with exactly one sensor neuron.
This establishes an injective mapping from the cortical
neurons to the sensor neurons. (3) The injective mapping
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establishes the formation of cortical neuron sets of n,
cortical neurons. This establishes a bijective mapping
from the cortical neuron sets to the sensor neurons and
vice versa. (4) Each emerging nonzero coupling has the
weight 7.

2. Principle underlying the proof

There are two main underlying reasons for the map-
ping theorem: First, biological matter does typically
grow proportional to its present biomass, this fact is used
for coupling growth here and it is inherent to the factor
W; in the coupling dynamics [see Eq. (6)]. This gives rise
to the fact that large couplings tend to grow faster than
small couplings. Second, biological matter does typically
grow within some limitations. Such limitation is used at
a neuron in a quite local manner and it is expressed via
the constraints [see Egs. (8) and (9)], or alternatively via
the additional dynamics [see Egs. (10) and (11)], and these
have been observed empirically for the case of synapses
[14]. It is already clear intuitively that the combination
of the first and second reasons gives rise to a tendency to-
wards states with one coupling at a cortical neuron and
ng couplings at a sensor neuron.

3. Proof

One may use multidimensional polar coordinates for
the couplings as follows.
W, =r cosﬁij ,
W,y =rsind; cosd; y ; ,
W;_yj=rsindsind, ,, ;cosd;

i —1,j)

(33)

(Nonsingular nature of the representation: Inherent to
polar coordinates is the singularity at the pole, for each
coupling state, this singularity may always be avoided by
shifting the pole away from the coupling constant. For-
mally, the coupling W;; might vary from positive to nega-
tive values in a nonanalytic manner; however, such varia-
tion is irrelevant, because K;; = W,% is the actual coupling
factor.) The networks that are locally stable with respect
to stochastic fluctuations are specified by the local mini-
ma of the potential V. Consequently, the partial deriva-
tives of the potential ¥ with respect to the above angle
variables vanish for these networks, that is,

v
0,

=0. (34)

In order to determine the form of such a derivative, one
may recall that any angular variable ,,; in the potential
V occurs in terms of a coszﬂmj or in terms of a sinzﬁmj,
because the couplings enter the potential in terms of
squares [see Egs. (4), (33), (25), (26), and (15)]. Conse-
quently, the derivative of the potential V with respect to
such an angular variable &,; is proportional to
sini,,;cost,,;, due to the chain rule. That is, each such
derivative is of the form

14
o

=sind},,;cosd,,;rest(T)=0 , (35)

mj

whereby rest(T) denotes the remaining factor, which is a
function of the formal temperature. Consequently, a net-
work that is locally stable with respect to stochastic fluc-
tuations obeys either sind,,;cosd,;=0 or rest(T)=0.
The networks that do not obey sin#,,;cosd,,; =0 do obey
rest(7)=0; thus they vary with the formal temperature,
hence they are not stable with respect to temperature
variations. As a consequence, those networks that are lo-
cally stable with respect to stochastic fluctuations and
with respect to variations of the formal temperature T do
obey sind,;cosd,,;=0. This implies 3,;=0 or
&,,j=m/2. Thus one gets [see Eq. (33)] Wy, is either O or
r.

Moreover, one may recall the constraints [see Egs. (8)
and (9)] nor’=3, W3, and r’=3; W, The first
(nor*=3,. W,%,j) implies that at each sensor neuron n;,
there are n, nonzero couplings W,,;=r. Analogously,
the second (r’= 3 j w2 ;) implies that each cortical neu-
ron ,,, there is exactly one nonzero coupling W, ;=r.
That is, each sensor neuron is connected with n cortical
neurons and each cortical neuron is connected with one
sensor neuron. This implies immediately the four items
of the theorem. Q.E.D.

4. Illustrative discussion of the mapping theorem

Here the bijective mapping emerges between sets of
cortical neurons and sensor neurons. This result is quite
general. For instance, if there are metric relations among
sensor neurons, these are related to cortical neurons and
may be described in terms of densities.

D. Emergence of clusters and topology preservation

In this section it is shown how clustering and topology
preservation emerge in the case of arbitrary topologies.
In such a case, there may occur constraints that cannot
be satisfied in a theoretically optimal manner, due to
missing neighbors, for instance. In order to formally
treat clustering and topology preservation emergence also
for such constraints, the notions cluster relation,
topology-preservation relation, and relative stabilization
are introduced first as follows:

At a locally stable coupling state (see injective mapping
theorem), two neighboring cortical neurons that are con-
nected with the same sensor neuron exhibit the cluster re-
lation, and two cortical neurons in the same neighbor set
that are connected with the same sensor neuron exhibit
the cluster relation, while two neighboring cortical neu-
rons that are connected with two neighboring sensor neu-
rons exhibit the topology-preservation relation. The po-
tential ¥ is a sum of local potentials V; [for details see (1)
of the following proof]. If a cluster relation or a
topology-preservation relation gives rise to a decrease of
a local potential ¥, then such a relation is called relative-
ly stable.
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1. Clustering and neighborship preservation theorem

For a coupling state that is locally stable with respect
to stochastic fluctuations and with respect to variations
of the formal temperature 7 holds: (1) A nonzero post-
synaptic lateral contribution parameter 3 is a necessary
and sufficient condition for the relative stabilization of a
cluster relation. (2) Nonzero presynaptic and postsynap-
tic lateral contribution parameters a and 3 are necessary
and sufficient for the relative stabilization of a topology-
preservation relation.

2. Principle underlying the proof

The clustering and topology preservation emerge here
due to four essential principles: First, the Hebb mecha-
nism increases couplings that transfer signals among suc-
cessively (that is almost coincidently) active neurons.
Second, a slight lateral signal transfer among neighboring
neurons, for instance, due to chemical or electrical leak-
age, can hardly be avoided in a realistic system. Such la-
teral signal transfers give rise to additional coincidences,
if the topology is preserved. Third, presently large cou-
pling biomass grows relatively fast (this is also essential
for the mapping theorem above). Fourth, the total cou-
pling biomass at a neuron is limited (this is also essential
for the mapping theorem above). As a result, those cou-
plings grow best and thus remain that provide most coin-
cidences and these are the couplings that provide clusters
and topology preservation.

3. Proof

(i) Separation of the potential ¥ into local potentials V;:
First one may recall [see Egs. (26) and (15)] that the parti-
tion function is

2 N
zt='3 Tl explh;(t +1)a,(t+1)/T] . (36)
{n;} i
Next one may exchange the product and the sum accord-
ing to the distributive law; so one gets

N 2
Zr=T01 3 explh(t+1)m(t+1)/T]
i=1 n;=0,1

N
= I (1+expl[h;(t +1)/T]) . (37)
i=1
Here one may apply the logarithm
N
InZ#= 3 In(1+explh;(t+1)/T]) . (38)
i=1

So the potential ¥ [see Eq. (25)] may be separated into lo-

cal potentials ¥;, one for each cortical neuron #; as fol-
lows:
1
i
ith V,=— 9L 3 In{1+exp[;(t +1)/T
with V;=— "% 3 In{1+exp[h;(t +1)/T]} .
w

(39)
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(ii) Form of the local fields 4; at a local minimum of the
potential ¥: Next one may explicate the formal local field

h; by using Eq. (4):

- N wi we,
hi(t+1)= 2 ¢,-j 5 +B 2 ¢qj 7 . (40)
J 7, EW)

As a consequence of the injective mapping theorem, in
the above sum 3 ; there are exactly the following nonzero
terms. The corresponding nonzero couplings may be ex-
pressed by using a sensor neuron index u (i) conjugated to
the index i of the connected cortical neuron 7;, a sensor
neuron index u (g) conjugated to the index g of the con-

nected cortical neuron 7#,. So one gets

W, wiy=r to7; from n

W,

u(i) »
. 41)
ulg="r tof, from n,, with 7, EV(i) .

Next one may insert these explicit expressions into the
above Eq. (40). So the sum over j yields nonzero terms
for j =u (i) and j =u(q). So one gets

2
B+ D="[0,0 B 3 dguip)] - (42)

ﬁqEV(i)

Here one may explicate the membrane potentials ¢;; in
terms of the sensor neuron states n; [see Eq. (1)]. So one
obtains

[

17,~(r+1>=’7 vnta S

n, Eviu(i)]

Ry, +ﬁ 2 nu(q)

ﬂqET/(i)

taf 3 DI

7, €M) 1, EV[u(g)]

(43)

Moreover, one may add an upper index u for the stimula-
tion, in order to indicate the inherent dependence of the
above terms on the particular stimulation:

2

~ r
h‘i‘(t"f‘l):? n,’f(,-)+a z n% +B 2 nté‘(q)
nmEv[u(i)] ﬂqET/(i)
+af 3 > (44)
1, E3) 1,y EV[u(Q)]

(iii) Form of a local potential ¥; at a local minimum of
the potential ¥: Due to Egs. (39) and (44), each local po-
tential V; is an average over the states of sensor neurons
ng; explicitly, ¥; takes the form

__ar 2 S2an,
V,-— Eﬂg{)]ln 1+exp _—-T—*— (45)
=0

(iv) Reduction of a local potential ¥; due to the identi-
ty of two sensor neurons n,: In this part, the basic reason
for the stabilization of clusters and topology preservation
is derived, namely, the potential reduction as a conse-
quence of equal presynaptic neurons n, in Eq. (45); this
may be interpreted as an effective force that tends to
make presynaptic neurons equal.
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One may begin with the above form for V;, consider two neurons n,=n, and n,=n, explicitly and denote the terms
due to the other n,by R. So one gets

aT 22 a,n, ta,n,+R
=—2> 3 In|l+exp | 222X — (46)
' 2Q nq=0,1 T

Next one may consider two local minima of the potential ¥ so that the neurons n, of the potential V; are the same for
both minima, except that in the second minimum one has n, =n,. In such a case the local potential V; of the second lo-
cal minimum is reduced by the term AV; =V, . not identical to n, V,,x identical to n,* This difference is determined as fol-

lows:

Q-2 a /T a /T
aT 2 (e * —1)e? —1)
AV, =— > In |1+ 47
20 1y =0, linaZn i, #n, e~ R/T4 0% /T+eay/T+e(aX+ay+R)/T
[
This AV; is positive, because the factors a, and «a, are Third, if « and B are nonzero, then the clustering
both positive for positive lateral coupling parameters a occurs as in the first case above, and in addition the term
and B. proportional to a3, namely,
(v) Proof of two parts of the theorem: In general, local
L 7
stability is achieved, if and only if subindices of neuron- af 3 2 Pm > (54)

variables that occur in Eq. (44) are equal [see part (iv)]. n €M) 1y EV ()]

First, if a is zero and B is nonzero, then Eq. (44) takes

gives rise to additional equal subindices as follows: Here
the form

5 the subindex m corresponds to a sensor neuron #n,, that is
e =r a neighbor of another sensor neuron n, , that is connect-
hitt+1)= 2 mio B X mi “®) ed wigth a cortical neuron 7, that is a x;‘e(i]éhbor of another
cortical neuron #;. Such sensor neurons n,, can be equal
Here, equal subindices can be achieved only if tO the sensor neuron n,; connected to the cortical neu-
u (i)=u (q), that is if the cortical neuron 7; and its neigh- ~ ron 7; or to a sensor neuron n,, connected to the corti-
bor 7, are connected to the same sensor neuron, or if cal neuron 7, neighboring 7;, due to topology preserva-

u(g')=u(q), that is if the cortical neuron 7, and another tion. Thus

ﬂqE'f'(i)

cortical neuron 7 in the same neighbor set are connect- 2 .

ed to the same sensor neuron. Thus ‘{CZB:#O is a sufficient and necessary

B+#0 is a sufficient condition for relative condition for relative stabilization
stabilization of a cluster relation (49) of a topology-preservation relation

and Q.E.D. (55)

B0 is not a sufficient condition for relative 4. On relative stability
stabilization of a topology-preservation Except for possible constraints due to the arbitrary to-

pology of a network, the minimization of the potential V'

relation . (50)  and of the potentials ¥; are identical. So the relative sta-

bility is the same as the usual stability, except for such
constraints. Thus, in systems without such constraints,
the relative stability is the same as the usual stability.

For instance, the one-dimensional model (see Fig. 1)
exhibits no such constraints, so each globally stable cou-
pling state exhibits perfect topology preservation; this
special case is treated explicitly in [8—-10]. The general
case of relative stability corresponds to the experimental
findings of almost perfect topology preservation in corti-
cal maps [15].

Second, if a is nonzero and B is zero, then Eq. (44)
takes the form
2
E¢f<t+1>=’7 nfota S nk|. (51)

n, €v[u(i]

The subindices occurring here cannot be made equal, so
neither clustering nor topology preservation emerges in
this case. Thus

B#0 is a necessary condition for relative 5. Interpretation of the topological order theorem

stabilization of a topology-preservation The theorem proves two essential facts. First, in a

relation (52) Hebb-type system, already infinitesimal lateral contribu-
tions to neighbor neurons give rise to the emergence of

and topology preservation. This can hardly be understood in
the framework of Kohonen-type networks, because the
latter contain the so-called “winner takes all” mechanism
stabilization of a cluster relation . (53) from the very beginning; as a consequence, the necessary

B+#0 is necessary for the relative
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quantitative considerations are practically completely
“overshadowed” by the assumed ‘“winner takes all”
mechanism. Moreover, such infinitesimal lateral contri-
butions to neighbor neurons occur practically in any sys-
tem, due to chemical or electrical leakages. As a conse-
quence, one should expect topological order to occur in
Hebb-type systems, irrespective of a possible purpose.
Second, topological order can be avoided in Hebb-type
systems, if at least one of the lateral contributions
(presynaptic or postsynaptic) is eliminated or compensat-
ed.

IV. CONCLUSION

Topology preservation is a ubiquitous phenomenon in
the mammalian nervous system [1,15]. Today it is quite
clear that self-organization processes of plastic synapses
are essential for the formation of such order and that
plastic synapses are adequately describable by a Hebb
mechanism [5]. So the following question arises. What
are the necessary and sufficient conditions for the self-
organized formation of topology preservation due to a
Hebb mechanism?

Previous modeling applied either Kohonen networks,
however, these make such crude assumptions (for in-
stance, a winner takes all mechanism) that the present
question cannot be investigated, or they used a slightly
unrealistic Hebb rule [5,8]. In contrast, in the present pa-
per a quite realistic Hebb rule and neurons with stochas-
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tic fluctuations are modeled. Moreover, the reasonable
growth law is used for coupling growth that the coupling
biomass increase is proportional to the present coupling
biomass under the constraint that the coupling biomass
at a neuron is limited. Infinitesimal lateral signal transfer
to neighbor neurons, as it occurs in any nervous system
due to chemical and electrical leakage, gives rise to topol-
ogy preservation.

In this manner it is proven for the present quite general
Hebb-type networks that such infinitesimal lateral signal
transfer to neighbor neurons is necessary and sufficient
for the emergence of topology preservation. As a conse-
quence, observed topology preservation in nervous sys-
tems may emerge with or without purpose as a byproduct
of infinitesimal lateral signal transfer to neighbor neurons
due to chemical and electrical leakage.

The modeling of topological order in terms of a simple
Hebb rule makes possible the future investigation and
possible understanding of combined learning and self-
organization mechanisms in the brain. Or alternatively,
one may implement technical neural networks that simul-
taneously self-organize topologically and learn via rein-
forcement with the same basic Hebb mechanism.
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